
Learning-Based Dichotomy Graph Sketch
for Summarizing Graph Streams

with High Accuracy

Ding Li , Wenzhong Li(B) , Yizhou Chen, Xu Zhong, Mingkai Lin,
and Sanglu Lu

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

{liding,mf20330010,xuzhong,mingkai}@smail.nju.edu.cn,
{lwz,sanglu}@nju.edu.cn

Abstract. Graph stream data is widely applied to describe the relation-
ships in networks such as social networks, computer networks and hyper-
link networks. Due to the large volume and high dynamicity of graph
streams, several graph sketches were proposed to summarize them for fast
queries. However, the existing graph sketches suffer from low performance
on graph query tasks due to hash collisions between heavy and light edges.
In this paper, we propose a novel learning-based Dichotomy Graph Sketch
(DGS) mechanism, which adopts two separate graph sketches, a heavy
sketch and a light sketch, to store heavy edges and light edges respec-
tively. DGS periodically obtains heavy edges and light edges in a session
of a graph stream, and use them as training samples to train a deep neu-
ral network (DNN) based binary classifier. The DNN-based classifier is
then utilized to decide whether the upcoming edges are heavy or not,
and store them in different graph sketches accordingly. With the learnable
classifier and the dichotomy graph sketches, the proposed mechanism can
resolve the hashing collision problem and significantly improve the accu-
racy for graph query tasks. We conducted extensive experiments on three
real-world graph stream datasets, which show that DGS outperforms the
state-of-the-art graph sketches in a variety of graph query tasks.

Keywords: Sketch · Graph sketch · Deep learning · Graph stream

1 Introduction

In many data stream applications, the connections are indispensable to describe
the relationships in networks such as social networks, computer networks and
communication networks. In these applications, data are organized as graph

This work was partially supported by the Natural Science Foundation of Jiangsu
Province (Grant No. BK20222003), the National Natural Science Foundation of China
(Grant Nos. 61972196, 61832008, 61832005), the Collaborative Innovation Center of
Novel Software Technology and Industrialization, and the Sino-German Institutes of
Social Computing.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Jin et al. (Eds.): KSEM 2023, LNAI 14118, pp. 47–59, 2023.
https://doi.org/10.1007/978-3-031-40286-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40286-9_5&domain=pdf
http://orcid.org/0000-0003-3859-5241
http://orcid.org/0000-0002-9199-3655
https://doi.org/10.1007/978-3-031-40286-9_5

48 D. Li et al.

streams [15] [4] which are different from traditional data streams that are mod-
eled as isolated items. A graph stream can form a dynamic graph that changes
with every arrival of an edge. For example, network traffic can be seen as a graph
stream, where each item in the stream represents the communication between
two IP addresses. The network traffic graph will change if a new packet arrives.
For another example, interactions between users in a social network can also be
seen as a graph stream, and these interactions forms a dynamic graph. The social
network graph will dynamically change when new interactions occur. Formally,
a graph stream is a consecutive sequence of items, where each item represents a
graph edge usually denoted by a tuple consisting of two endpoints and a weight.

With the increase of graph sizes, it is necessary to build an accurate but
small representation of the original graph for more efficient analytics. To achieve
this goal, researchers studied the graph summarization problem to concisely pre-
serve overall graph structure while reducing its size. For example, Hajiabadi et
al. designed a utility-driven graph summarization method G-SCIS [6] that pro-
duced optimal compression with zero loss of utility. However, graph summariza-
tion focused on summarizing static graphs, which was unable to handle dynamic
graphs that are formed by graph streams. To summarize graph streams, some
researchers proposed graph sketch. For example, Tang et al. proposed a novel graph
sketch called TCM [15]. TCM summarized a graph stream by a matrix where each
edge was mapped to a bucket of the matrix using a hash function, and the edge
weight was recorded in the corresponding bucket. TCM supported not only edge
query but also node query since it keeped the topology information of the graph.
More recently, Gou et al. desinged GSS [4] which combined a matrix and an adja-
cency list buffer to improve the accuracy of edge query. The adjacency list buffer
stored the edge when a hash collision happened in the matrix. In their follow-up
work [5], they partitioned the matrix of GSS into multiple blocks, and accelerated
the query with bitmaps and FPGA (Field Programmable Gate Array).

Typically, conventional graph sketches use a random hash function to map
each edge to a bucket of a matrix, and then record the edge weight in the
corresponding bucket, which works as illustrated in Fig. 1. However, due to the
randomness of hash function, hash collisions may occur in querying an edge or
a node with the graph sketch. Especially when a heavy edge (an edge with large

Fig. 1. Conventional graph sketch stores all edges in a single matrix.

Learning-Based Dichotomy Graph Sketch 49

weight) is collided with a light edge (an edge with small weight), it will cause
severe performance degradation on query tasks. As shown in Fig. 1, a toy graph
stream consists of a heavy edge (edge e2) whose weight is 100 and several light
edges (edge e1, e3, and e4). The conventional graph sketches may map a heavy
edge e2 and a light edge e1 to the same bucket of the matrix due to a hash
collision. In graph sketch, the bucket stores the sum of the edge weights (see
Sect. 3 for details), and thus the value recorded in this bucket is 1 + 100 = 101.
In this case, if we query the weight of edge e1, the graph sketch will return the
value 101, and the relative error of this query is (101 − 1)/1 = 100, which is
exceptionally high for a light edge.

To address this issue, it is desirable to design a new graph sketch mechanism
to resolve the high query error caused by hash collisions. In this paper, we
propose a novel Dichotomy Graph Sketch (DGS) approach, which is able to
differentiate heavy edges and light edges during the sketch updating process and
respectively store them in two separate matrices to avoid hash collisions. When
a new edge arrives, DGS first decides whether it is a heavy edge or not by an
edge classifier. If the edge is classified as a heavy edge, it will be stored in a heavy
sketch; otherwise, it will be stored in a light sketch. To train the edge classifier,
we set a sample generator which consists of a temporal graph sketch and two
min-heaps to generate training samples. The edges in each session are also fed
into the sample generator to obtain the heavy edges (see Sect. 4 for details) to
train the edge classifier. In this way, hash collision can be avoided and the query
performance will be improved.

The main results and contributions of this paper are summarized as follows.

– We propose dichotomy graph sketch (DGS), a novel mechanism for graph
stream summarization. It is able to differentiate heavy edges from light edges
during the edge updating process.

– We introduce deep learning techniques into the design of graph sketch mech-
anism. Specifically, we design a novel deep neural network architecture to
detect heavy edges during the edge updating process, which helps to store
heavy edges and light edges in separate matrices to avoid hash collision.

– We conduct extensive experiments on three real-world graph streams to eval-
uate the performance of the proposed DGS. The experimental results show
that DGS outperforms the state-of-the-art graph sketches in a variety of graph
query tasks.

2 Related Work

2.1 Data Stream Sketches

Data stream sketches are designed for data stream summarization. C-sketch [1]
utilized several hash tables to record data streams, but suffered from both overes-
timation and underestimation in frequency estimation task. Estan et al. designed
CU-sketch [3] which improved query accuracy at the cost of not supporting item
deletions. SF-sketch [14] used both a large sketch and a small sketch to upgrade
the query accuracy. Li et al. designed WavingSketch [13] which was a generic

50 D. Li et al.

and unbiased algorithm for finding top-k items. Zhang et al. proposed On-Off
sketch [16] which focused on the problem of persistence estimation and finding
persistent items by a technique to separate persistent and non-persistent items.
Stingy Sketch [12] was a sketch framework which designed bit-pinching counter
tree and prophet queue to optimize both the accuracy and speed for frequency
estimation task.

2.2 Graph Stream Sketch

In contrast to data stream sketches, graph sketches are specially designed for
graph stream summarization, keeping the topology of a graph and thus simulta-
neously supporting several queries such as edge query and node query. Tang et al.
proposed TCM [15] which adopted several adjacency matrices with irreversible
hash functions to store a graph stream. Different from TCM, gMatrix [8] used
reversible hash functions to generate graph sketches. Gou et al. proposed GSS
[4] which consisted of not only an adjacency matrix but also an adjacency list
buffer. Adjacency list buffer was used to store the edge when an edge collision
happened to improve the query accuracy. In their follow-up work [5], they pro-
posed an improved version called blocked GSS, and designed two directions of
accelerating query: GSS with node bitmaps and GSS implemented with FPGA.
In [11], Li et al. proposed Dynamic Graph Sketch which was able to adaptively
extend graph sketch size to mitigate the performance degradation caused by
memory overload.

In summary, all the existing graph sketches use a single matrix to store both
heavy edges and light edges and thus suffer from low query accuracy (especially
for light edge query task) due to hash collisions.

3 Preliminaries

In this section, we provide formal definitions and introduce the preliminary of
summarizing a graph stream with graph sketches.

Definition 1 (Graph stream). A graph stream is a consecutive sequence of
items S = {e1, e2, . . . , en}, where each item ei = (s, d, t, w) denotes a directed
edge from node s to node d arriving at timestamp t with weight w.

It is worth noting that an edge ei may appear multiple times at different
timestamps. Thus, the final weight of ei is computed by an aggregation function
based on all edge weights of ei. Common aggregation functions include min(·),
max(·), average(·), sum(·), etc. Among them, sum(·) is mostly adpoted [15] [4],
and thus we also use sum(·) as the aggregation function in the rest of this paper.

Since the edges in a graph stream arrive one by one, a graph stream S =
{e1, e2, . . . , en} can form a dynamic graph which changes with every arrival of
an edge (both edge weight and graph architecture may change).

Definition 2 (Session). A session C = {ei, ei+1, . . . , ej}(1 ≤ i < j ≤ n) is
defined as a continuous subsequence of a graph stream S = {e1, e2, . . . , en}.

Learning-Based Dichotomy Graph Sketch 51

Definition 3 (Heavy edge). A heavy edge refers to the edge whose final weight
is ranked in the top k percentage among all the unique edges in a graph stream S.

Definition 4 (Light edge). Except heavy edges, all the other edges are regarded
as light edges in a graph stream S.

Definition 5 (Graph sketch [15]). Supposing that a graph G = (V,E) is
formed by a given graph stream S, graph sketch K is defined as a graph K =
(VK, EK) whose size is smaller than G, i.e., |VK| ≤ |V | and |EK| ≤ |E|, where
a hash function H(·) is associated to map each node in V to a node in VK.
Correspondingly, an edge (s, d) in E will be mapped to the edge (H(s),H(d))
in EK.

To reduce the query error caused by hash collisions, a common method is to
simultaneously use a set of graph sketches {K1,K2, . . . ,Km} with different hash
functions {H1(·),H2(·), . . . ,Hm(·)} to summarize a graph stream.

Definition 6 (Graph compression ratio[15]). Compression ratio r in graph
summarization means that a graph sketch uses |E|×r space to store a graph G =
(V,E). For example, if a graph stream contains 500, 000 edges, compression ratio
1/50 indicates that the graph sketch takes 500, 000 × 1/50 = 10, 000 space units,
which is a

√
10, 000 × √

10, 000 (i.e. 100 × 100) matrix. In practice, adjacency
matrix is usually adopted to implement a graph sketch. We call α =

√|E| × r
the width of graph sketch.

Assuming that two graph sketches with different hash functions are utilized
to summarize a graph stream S, at the beginning, all values in the two adja-
cency matrices are initialized with 0. When an edge arrives, both graph sketches
conduct an edge update operation as follows.

Edge Update: To record an edge e = (s, d, t, w) from graph stream S, each
graph sketch Ki calculates the hash values (Hi(s),Hi(d)). Then, it locates the
corresponding position Mi[Hi(s)][Hi(d)] in the adjacency matrix, and adds the
value in that position by w.

After the graph sketches process all edge updates in the graph stream, they
can be used to fastly answer edge query and node query in linear time, which
can be described as follows.

Edge Query: Given an edge e = (s, d), edge query is to return the weight
of e estimated by the graph sketch. To answer the query, we first query the
weight of e in all the graph sketches. Specifically, for each graph sketch Ki,
we locate the corresponding position Mi[Hi(s)][Hi(d)] and return the value in
the position as the estimated weight. In this way, we can obtain a set of weights
{w1, w2, . . . , wm}. According to the principle of count-min sketch [2], the minimal
value of the set of sketches is used to estimate the value of the accumulative
count, therefore we return min{w1, w2, . . . , wm} for the edge query.

Node Query: Given a node n, node query is to return the aggregated edge
weight from node n. To answer the query, for each graph sketch Ki, we can first
locate the row corresponding to node n (i.e. the Hi(n)th row) in the adjacency

52 D. Li et al.

matrix Mi, and then sum up the values in that row to obtain a set of sums
{sum1, sum2, . . . , summ}. Similarly, we return min{sum1, sum2, . . . , summ} for
the node query.

Top-K Node Query: Top-k node query is to return the list of top-k nodes
with the highest aggregated weights in graph stream S. To answer this query, we
additionally maintain a min-heap with size k to store the top-k nodes. Specif-
ically, after updating each edge e = (s, d), we conduct a node query for node
s, and obtain its aggregated weight ws. Then, we push the tuple (s, ws) into
the min-heap. If the min-heap is full, it will pop out the tuple with the lowest
weight. After all edge updates, we return the set of nodes in the min-heap as the
answer of top-k node query.

4 Dichotomy Graph Sketch Mechanism

In this section, we detailly introduce the proposed Dichotomy Graph Sketch
(DGS) mechanism which is able to mitigate the performance problem caused by
hash collisions between heavy edges and light edges. The proposed framework
is illustrated in Fig. 2. Firstly, all edges in the current session are represented
by a sub-graph stream C = {ei, ei+1, . . . , ej}. These edges are sequentially fed
into an edge classifier. If an edge is classified as a heavy edge, it will be stored
in the heavy sketch (Kh); otherwise it will be stored in the light sketch (Kl).
In the first session, since the edge classifier has not been trained, all edges will
be stored in the light sketch. In the subsequent sessions, a sample generator
is applied to generate the training samples for the edge classifier. It obtains
heavy edges in the current session by querying all heavy edges from the min-
heap, and chooses the same amount of light edges in the current session with
random sampling. The heavy edges together with the chosen light edges are
used as training samples to train the edge classifier, which is used to construct
dichotomy sketches. After each session, all values in the sample generator are
reset to null, and DGS continues to process the next session to construct the
graph sketches incrementally.

Fig. 2. The framework of our proposed dichotomy graph sketch.

Learning-Based Dichotomy Graph Sketch 53

The major components of DGS, i.e., the heavy sketch, the light sketch, the
sample generator and the edge classifier, are introduced as follows.

4.1 Heavy Sketch and Light Sketch

Heavy sketch and light sketch both work exactly as a basic graph sketch (see
definition 5 for details). When an edge in the graph stream arrives, it will first
be fed into the edge classifier. If the edge is classified as a heavy edge, it will be
stored in the heavy sketch; otherwise it will be stored in the light sketch.

Since the number of heavy edges is usually much smaller than the number of
light edges in a graph stream, we set the size of heavy sketch smaller than that
of the light sketch in practice.

4.2 Sample Generator

To obtain the heavy edges and the heavy nodes in each session, we design a
sample generator which consists of a temporal graph sketch and two min-heaps.
The temporal graph works exactly the same as a basic graph sketch, and the two
min-heaps are maintained for obtaining heavy edges and heavy nodes, respec-
tively. After the sample generator finishes all edge updates of the current session,
the heavy edges in the min-heap will be used as training samples to train the
edge classifier, and heavy nodes together with their aggregated weights will be
recorded in the heavy node candidate list (which is a hash table that maps the
node ID to its aggregated weight as shown in Fig. 2) as the candidates for top-k
nodes query. If a node is already in the heavy node candidate list, we simply
update its aggregated weight by adding up the old weight and the new weight.
Finally, before processing the edges in the next session, sample generator resets
all the values of the temporal graph sketch to null, and clear the min-heaps.

4.3 Edge Classifier

To differentiate heavy edges from light edges during the edge updating process,
we build a binary probabilistic classification model. The basic idea is to learn
a model f that can predict if an edge ei = (na, nb) is a heavy edge or not.
In other words, we can train a deep neural network classifier based on dataset
D = {(ei = (na, nb), yi = 1|ei ∈ H} ∪ {(ei = (na, nb), yi = 0|ei ∈ L} where H
denotes the set of heavy edges, and L denotes the set of light edges (from the
sample generator). According to the discussion in Sect. 4.3, we find that node
embeddings are very recognizable features to differentiate between heavy edges
and light edges. Therefore the node embeddings are included in the input feature
vector to train the DNN.
Node embeddings using a graph auto-encoder In graph representation
learning, it is common to obtain node embeddings which are essentially feature
representations to help accomplish downstream tasks. Thus, to help the classifier
accurately classify heavy edges and light edges, we obtain node embeddings using
a graph auto-encoder (GAE) [9] model.

54 D. Li et al.

Formally, given a graph G = (V,E) with |V | = N , we denote its degree
matrix as D, and its adjacency matrix as A. In addition, node features are
summarized in an N × M feature matrix X.

GAE utilizes a two-layer graph convolutional network (GCN) [10] as the
encoder to form the node embeddings of a graph. Formally, the node embeddings
are denoted by Z = GCN(X,A) where GCN(·) denotes the two-layer graph
convolutional network. The two-layer GCN is defined as

GCN(X,A) = ÃReLU(ÃXW0)W1, (1)

where ReLU(·) = max(0, ·), and Ã = D− 1
2AD− 1

2 is the symmetrically normal-
ized adjacency matrix. To reconstruct the graph, GAE adopts Â = σ(ZZT) as
the decoder where Â denotes the adjacency matrix of the reconstructed graph G′.

To train a GAE for a graph G, we can feed the G’s adjacency matrix A
together with its node feature matrix X into the GAE, and obtain the adjacency
matrix Â of the reconstructed graph G′. Then, we minimize the following cross
entropy loss:

L =
1
n

∑
ylogŷ + (1 − y)log(1 − ŷ), (2)

where y denotes the element in A, and ŷ denotes the element in Â. After the GAE
is well trained, we can obtain the current node embeddings Z = GCN(X,A).

Note that it is time-consuming and space-expensive to construct a lossless
graph G for each session of the graph stream. To reduce the complexity, we use
the temporal graph sketch Ks in the sample generator as input to train the GAE,
since a graph sketch can be regarded as the compression of the original graph.

Structure of the Edge Classifier. The structure of the proposed deep neu-
ral network classifier is presented in Fig. 3. As mentioned previously, the input
consists of two nodes (source node and destination node of an edge) and their
corresponding node embeddings. The input first respectively goes through two
fully-connected layers. Then, the output of the fully-connected layer is fed into
a softmax layer, which outputs a probability distribution representing the prob-
ability that the input edge is a heavy edge. The details of the edge classifier is
illustrated in Fig. 3.

Fig. 3. The details of the proposed edge classifier.

Learning-Based Dichotomy Graph Sketch 55

4.4 Implementation of Graph Query Tasks

In this section, we introduce how DGS answers different kinds of queries.

Dealing with Edge Query and Node Query. Given an edge ei = (s, d),
we first feed node s, node d, and their node embeddings into the trained edge
classifier to predict whether ei is a heavy edge. If ei is classified as a heavy edge,
the heavy sketch will answer the weight of ei (the method to answer the weight
is exactly the same as that introduced in Sect. 3); otherwise the light sketch will
answer the weight of ei. As for node query for node n, we first locate the row
corresponding to node n in the graph sketch, sum up the values in that row, and
then return the minimum value among all the sums.

Dealing with Top-K Node Query. Since we store the heavy nodes of each
session in the heavy node candidate list, to answer the top-k heavy node query,
we can simply return the top-k heavy nodes with the highest weight in the heavy
node candidate list.

5 Performance Evaluation

To validate the effectiveness of the proposed Dichotomy Graph Sketch (DGS), we
conducted extensive experiments on three real-world graph stream datasets. We
compare our method with two state-of-the-art graph sketches: TCM [15] and
GSS [4]. All experiments were performed on a laptop with Intel Core i5-9300H
processors (4 cores, 8 threads), 8 GB of memory, and NVIDIA GeForce RTX
2060 GPU. All sketches except GSS were implemented in Python. For GSS, we
used the C++ source code provided on the Github1.

5.1 Datasets

We use three real-world graph stream datasets, which are described as follows.

Wiki talk cy 2: The first dataset is the communication network of the Welsh
Wikipedia. Nodes represent users, and an edge from user A to user B denotes
that user A wrote a message on the talk page of user B at a certain timestamp.
It contains 2,233 users (nodes) and 10,740 messages (edges).

Subelj jung 3: The second dataset is the software class dependency network
of the JUNG 2.0.1 and javax 1.6.0.7 libraries, namespaces edu.uci.ics.jung and
java/javax. Nodes represent classes, and an edge between them indicates that
there exists a dependency between two classes. It contains 6,210 classes (nodes)
and 138,706 dependencies (edges).

1 https://github.com/Puppy95/Graph-Stream-Sketch.
2 http://konect.cc/networks/wiki talk cy/.
3 http://konect.cc/networks/subelj jung-j/.

https://github.com/Puppy95/Graph-Stream-Sketch
http://konect.cc/networks/wiki_talk_cy/
http://konect.cc/networks/subelj_jung-j/

56 D. Li et al.

Facebook-wosn-wall 4: The third dataset is the directed network of a small
subset of posts to other user’s wall on Facebook. The nodes of the network are
Facebook users, and each directed edge represents one post, linking the users
writing a post to the users whose wall the post is written on. It contains 46,952
users (nodes) and 876,993 posts (edges).

5.2 Performance Metrics

We adopt the following metrics for performance evaluation in our experiments.
Average relative error (ARE) [15]: it measures the accuracy of the weights
that are estimated by a graph sketch in the edge query task.
Intersection accuracy (IA) [15]: it measures the accuracy of the top-k heavy
nodes reported by a graph sketch.
Normalized discounted cumulative gain (NDCG) [7]: it is a measure of
ranking quality representing the usefulness (also called gain) of a node based on
its position in the ranking list. Normally NDCG ∈ [0, 1], and the higher NDCG
means the stronger ability to find the top-k nodes.

5.3 Numerical Results

We analyze the numerical results for edge query and node query of different
sketches. For a fair comparison, the memory usages of TCM, GSS, and our
proposed DGS are equal in both edge query task and node query task. Note that
the DGS framework refers to two hyperparameters: compression ratio (set to
1/10 by default), and the input size of the edge classifier (set to 32 by default).

Edge Query. To evaluate the ability to answer edge query on the baseline
methods and our proposed DGS, for each dataset, we query all the edges and
calculate the average relative error (ARE). Table 1, 2 and 3 show the ARE
of edge query task achieved by TCM, GSS and our proposed DGS. Besides
calculating the total ARE by querying all edges, we also separately calculate the
ARE of querying heavy edges and that of querying light edges. As can be seen,
DGS achieves the lowest ARE among all three methods. Specifically, in TCM
and GSS, the ARE of edge queries on dataset subelj jung is 22.359 and 39.386,
respectively. In contrast, our proposed DGS outperforms the other algorithms
significantly, and its ARE is only 17.264. Moreover, both the ARE of querying
light edges (17.295) and that of querying heavy edges (1.433) achieved by DGS
are the lowest compared with the baseline methods. Similarly, DGS also achieves
the lowest ARE on the other two datasets.

4 http://konect.cc/networks/facebook-wosn-wall/.

http://konect.cc/networks/facebook-wosn-wall/

Learning-Based Dichotomy Graph Sketch 57

Table 1. The ARE of edge query (wiki
talk cy)

Method Total
ARE

ARE of
light edges

ARE of
heavy edges

TCM 10.388 10.436 0.274

GSS 10.038 10.083 0.622

DGS 7.875 7.909 0.202

Table 2. The ARE of edge query (subelj
jung)

Method Total
ARE

ARE of
light edges

ARE of
heavy edges

TCM 22.359 22.399 2.079

GSS 39.386 39.458 3.320

DGS 17.264 17.295 1.433

Table 3. The ARE of edge query (facebook-wosn-wall)

Method Total ARE ARE of light edges ARE of heavy edges

TCM 2.261 2.262 0.015

GSS 5.256 5.258 0.340

DGS 2.056 2.057 0.212

Top-K Heavy Node Query. We evaluate the ability to find top-k heavy nodes
of DGS as well as TCM. We do not conduct this experiment with GSS since GSS
does not support heavy node query. The results are shown in Fig. 4 and Fig. 5.
As shown in Fig. 4, DGS outperforms TCM on all three datasets. Specifically,
in the task of finding top-20 heavy nodes, DGS achieves an IA of 95%, 85% and
90% on dataset wiki talk cy, subelj jung, and facebook-wosn-wall, respectively. In
contrast, TCM only achieves an IA of 80%, 25%, and 45%. In the task of finding
top-50 and top-100 heavy nodes, DGS also outperforms TCM significantly. This
illustrates that DGS has strong ability to find heavy nodes accurately.

We also calculate the NDCG based on the result list of top-k heavy node
query. The results are shown in Fig. 5. Similarly, the NDCG achieved by DGS is
much higher than that of TCM.

Fig. 4. Heavy node query (intersection accuracy)

58 D. Li et al.

Fig. 5. Heavy node query (NDCG)

6 Conclusion

This paper proposed a novel framework for large-scale graph stream summariza-
tion called DGS. Different from conventional graph sketches that store all edges
in a single matrix, DGS adopts two separate matrices, the heavy sketch and
the light sketch, to respectively store heavy edges and light edges to avoid the
serious performance drop caused by hash collisions. DGS designs a DNN-based
binary classifier to decide whether an edge is heavy or not before storing it. If
the edge is classified as a heavy edge, it will be stored in the heavy sketch; oth-
erwise it will be stored in the light sketch. Extensive experiments based on three
real-world graph streams showed that the proposed method is able to achieve
high accuracy for graph queries compared to the state-of-the-arts.

References

1. Charikar, M., Chen, K.C., Farach-Colton, M.: Finding frequent items in data
streams. In: 29th International Colloquium on Automata, Languages and Pro-
gramming, pp. 693–703 (2002)

2. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithm. 55(1), 58–75 (2005)

3. Estan, C., Varghese, G.: New directions in traffic measurement and accounting:
focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst. 21(3),
270–313 (2003)

4. Gou, X., Zou, L., Zhao, C., Yang, T.: Fast and accurate graph stream summa-
rization. In: The 35th IEEE International Conference on Data Engineering (ICDE
2019), pp. 1118–1129 (2019)

5. Gou, X., Zou, L., Zhao, C., Yang, T.: Graph stream sketch: summarizing graph
streams with high speed and accuracy. IEEE Trans. Knowl. Data Eng. (2022)

6. Hajiabadi, M., Singh, J., Srinivasan, V., Thomo, A.: Graph summarization with
controlled utility loss. In: The 27th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, Singapore, pp. 536–546 (2021)

7. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inform. Syst. 20(4), 422–446 (2002)

8. Khan, A., Aggarwal, C.C.: Query-friendly compression of graph streams. In: 2016
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2016), pp. 130–137 (2016)

Learning-Based Dichotomy Graph Sketch 59

9. Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016). arxiv.org/abs/
1611.07308

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations (ICLR
2017), Toulon, France (2017)

11. Li, D., Li, W., Chen, Y., Lin, M., Lu, S.: Learning-based dynamic graph stream
sketch. In: Advances in Knowledge Discovery and Data Mining - 25th Pacific-Asia
Conference, Virtual Event (PAKDD 2021), vol. 12712, pp. 383–394 (2021)

12. Li, H., Chen, Q., Zhang, Y., Yang, T., Cui, B.: Stingy sketch: a sketch framework
for accurate and fast frequency estimation. Proc. VLDB Endowm. 15(7), 1426–
1438 (2022)

13. Li, J., et al.: Wavingsketch: An unbiased and generic sketch for finding top-k items
in data streams. In: The 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event (KDD 2020), pp. 1574–1584 (2020)

14. Liu, L., et al.: SF-sketch: A two-stage sketch for data streams. IEEE Trans. Parallel
Distrib. Syst. 31(10), 2263–2276 (2020)

15. Tang, N., Chen, Q., Mitra, P.: Graph stream summarization: From big bang to big
crunch. In: The 2016 International Conference on Management of Data (SIGMOD
2016), pp. 1481–1496 (2016)

16. Zhang, Y., et al.: On-off sketch: a fast and accurate sketch on persistence. Proc.
VLDB Endowm. 14(2), 128–140 (2020)

http://arxiv.org/1611.07308
http://arxiv.org/1611.07308

	Learning-Based Dichotomy Graph Sketch for Summarizing Graph Streams with High Accuracy
	1 Introduction
	2 Related Work
	2.1 Data Stream Sketches
	2.2 Graph Stream Sketch

	3 Preliminaries
	4 Dichotomy Graph Sketch Mechanism
	4.1 Heavy Sketch and Light Sketch
	4.2 Sample Generator
	4.3 Edge Classifier
	4.4 Implementation of Graph Query Tasks

	5 Performance Evaluation
	5.1 Datasets
	5.2 Performance Metrics
	5.3 Numerical Results

	6 Conclusion
	References

